Galois Field Lecture 2

Indah Emilia Wijayanti

Department of Mathematics Universitas Gadjah Mada, Yogyakarta, Indonesia

CIMPA Research School on

Group Actions in Arithmetic and Geometry
Universitas Gadjah Mada, Yogyakarta 17-28 February 2020

Outline

(1) Algebraic Extensions

(2) Splitting Fields

Preliminaries

- If K is a field containing the field F, then K is said to be an extension field of F.
- We denote it as K / F.
- If K / F is any extension of fields, then K is a vector space of F.
- The degree of a field extension K / F is the dimension of K as a vektor space over F, denoted by $[K: F]=\operatorname{dim}_{F}(K)$.

Algebraic extension

Let F be a field and K an extension of F,
$f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in F[x]$. For any $\gamma \in K$, if it satisfies

$$
f(\gamma):=a_{0}+a_{1} \gamma+\cdots+a_{n} \gamma^{n}=0
$$

we call it root of $f(x)$.

Proposition

Let F be a field and let $p(x) \in F[x]$ be an irreducible polynomial. Then there exists a field K containing an isomorphic copy of F in which $p(x)$ has a root

Definition

The element α of K is said to be algebraic over F if α is a root of some nonzero polynomial $f(x) \in F[x]$. The extension K / F is said to be algebraic if every element of K is algebraic over F.

- If α is algebraic over a field F, then it is algebraic over any extension field L of F.
- Example : $f(x)=x^{2}+1 \in \mathbb{Q}[x] . i=\sqrt{-1} \in \mathbb{C}$ is a root of $f(x)$, so it is algebraic over \mathbb{Q}.

Minimal polynomial (1)

Proposition

Let α be algebraic over F.

1. There is a unique monic irreducible polynomial $m_{\alpha, F}(x) \in F[x]$ which has α as a root.
2. A polynomial $f(x) \in F[x]$ has α as a root if and only if $m_{\alpha, F}(x)$ devides $f(x)$ in $F[x]$.

Minimal polynomial (2)

Definition

The polynomial $m_{\alpha, F}(x)$ or $m_{\alpha}(x)$ is called the minimal polynomial for α over F. The degree of $m_{\alpha}(x)$ is called the degree of α.

- The minimal polynomial for $\sqrt{2}$ over \mathbb{Q} is $x^{2}-2$ and $\sqrt{2}$ is of degree 2 over $\mathbb{Q},[\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=2$.
- The minimal polynomial for $\sqrt[3]{2}$ over \mathbb{Q} is $x^{3}-2$ and $\sqrt[3]{2}$ is of degree 3 over $\mathbb{Q},[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]=3$.

Proposition

Let α be algebraic over F and $F(\alpha)$ the field generated by α over F. Then

$$
F(\alpha) \simeq F[x] /<m_{\alpha}(x)>
$$

and in particular $[F(\alpha): F]=\operatorname{deg}\left(m_{\alpha}(x)\right)=\operatorname{deg} \alpha$.

Proposition

The element α is algebraic over F if and only if $F(\alpha) / F$ is finite. Moreover, if the extension K / F is finite, then it is algebraic.

Proposition

Let $F \subseteq K \subseteq L$ be fields. Then $[L: F]=[L: K][K: F]$.

Corollary

Suppose L / F is a finite extension and let K be any subfield of L containing $F, F \subseteq K \subseteq L$. Then $[K: F]$ is divides $[L: F]$.

Example

- Consider $\sqrt[6]{2}$ and $[\mathbb{Q}(\sqrt[6]{2}): \mathbb{Q}]=6$.
- Since $(\sqrt[6]{2})^{3}=\sqrt{2}$, we get the minimal polynomial for $\sqrt[6]{2}$ in $\mathbb{Q}(\sqrt{2})$ is $f(x)=x^{3}-\sqrt{2} \in \mathbb{Q}(\sqrt{2})[x]$.
- Hence $\mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\sqrt[6]{2})$ and $[\mathbb{Q}(\sqrt[6]{2}): \mathbb{Q}(\sqrt{2})]=3$.
- Together we have

and

$$
\underbrace{\mathbb{Q} \subset \mathbb{Q}(\sqrt{2})}_{2}, \underbrace{\mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\sqrt[6]{2})}_{3} .
$$

Example

- Consider the field $\mathbb{Q}(\sqrt{2}, \sqrt{3})$, which is generated by $\sqrt{2}$ and $\sqrt{3}$ over \mathbb{Q}.
- Since $x^{2}-3$ is irreducible in $\mathbb{Q}(\sqrt{2})$, $[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}(\sqrt{2})]=2$.
- Hence $[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}]=4$.

The composite field

Definition

Let K_{1} and K_{2} be subfields of a field K. The composite field of K_{1} and K_{2}, denoted by $K_{1} K_{2}$, is the smallest subfield K containing both K_{1} and K_{2}.

- Find composite of the two fields $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt[3]{2})$.
- Consider that $\sqrt[6]{2}$ has the polynomial minimal both in $\mathbb{Q}(\sqrt{2})[x]$ and $\mathbb{Q}(\sqrt[3]{2})[x]$.
- Conversely, any field containing $\sqrt{2}$ and $\sqrt[3]{2}$ contains $\sqrt[6]{2}$ too.
- Hence $\mathbb{Q}(\sqrt{2}) \mathbb{Q}(\sqrt[3]{2})=\mathbb{Q}(\sqrt[6]{2})$.

Splitting fields

Definition

The extension field K of F is called a splitting field for the polynomial $f(x) \in F[x]$ if $f(x)$ factors completely into linear factors in $K[x]$ and $f(x)$ does not factor completely into linear factors over any proper subfield of K containing F.

- If $f(x)$ is of degree n, then $f(x)$ has at most n roots in F.
- If $f(x)$ is of degree n, it has precisely n roots in F if and only if $f(x)$ splits completely in $F[x]$.

Existence of splitting field

Theorem

1. For any field F, if $f(x) \in F[x]$, then there exists an extension K of F which is a splitting field for $f(x)$.
2. Any two splitting fields for $f(x) \in F[x]$ over F are isomorphic.

- The splitting field for $x^{2}-2$ over \mathbb{Q} is just $\mathbb{Q}(\sqrt{2})$, since two roots are $\sqrt{2}$ and $-\sqrt{2}$ in $\mathbb{Q}(\sqrt{2})$.
- The splitting field for $\left(x^{2}-2\right)\left(x^{2}-3\right)$ over \mathbb{Q} is $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ generated by $\sqrt{2}$ and $\sqrt{3}$, since four roots are $\sqrt{2},-\sqrt{2}, \sqrt{3},-\sqrt{3}$. Moreover, we know that

$$
\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\sqrt{2}, \sqrt{3})
$$

- Let F be a field and $f(x) \in F[x]$ be a polynomial with leading cofficient a_{n}.
- Over a splitting field for $f(x)$ we have the factorization :

$$
f(x)=a_{n}\left(x-\alpha_{1}\right)^{n_{1}}\left(x-\alpha_{2}\right)^{n_{2}} \cdots\left(x-\alpha_{k}\right)^{n_{k}}
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are distinct elements of the splitting field and $n_{i} \geq 1$ for all i.

- Recall that α_{i} is called a multiple root if $n_{i}>1$ and is called a simple root if $n_{i}=1$.
- The integer n_{i} is called the multiplicity of α_{i}.

Separable

Definition

A polynomial over F is called separable if it has no multiple roots. A polynomial which is not separable is called inseparable.

- Polynomial $x^{2}-2$ is separable over \mathbb{Q} since its two roots $\sqrt{2}$ and $-\sqrt{2}$ are distinct.
- Polynomial $\left(x^{2}-2\right)^{3}$ is inseparable over \mathbb{Q} since its roots $\sqrt{2}$ and $-\sqrt{2}$ has multiplicity 3 .

Proposition

A polynomial $f(x)$ has a multiple root α if and only if α is also a root of $D_{x} f(x)$. In particular, $f(x)$ is separable if and only if $\left(f(x), D_{x} f(x)\right)=1$.

- The polynomial $x^{p^{n}}-x$ over F_{p} has derivatif $p^{n} x^{p^{n}-1}-1=-1$, since the field has characteristic p. The derivative has no roots, so the polynomial has no multiple roots, hence it is separable.
- For example $x^{4}-x$ over F_{3} is separable.
- The polynomial $x^{n}-1$ has derivatif $n x^{n-1}$. Over any field of characteristic not dividing n this polynomial has only the root 0 , which is not a root of $x^{n}-1$. Hence $x^{n}-1$ is separable and there are n distinct $n^{\text {th }}$ root of unity.

Proposition

Every irreducible polynomial over a field of characteristic 0 is separable. A polynomial over such a field is separable if and only if it is the product of distinct irreducible polynomials.

Proposition

Every irreducible polynomial over a finite field F is separable. A polynomial in $F[x]$ is separable if and only if it is the product of distinct irreducible polynomials in $F[x]$.

