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Algebraic Extensions

Preliminaries

If K is a field containing the field F , then K is said to
be an extension field of F .

We denote it as K/F .

If K/F is any extension of fields, then K is a vector
space of F .

The degree of a field extension K/F is the dimension
of K as a vektor space over F , denoted by
[K : F ] = dimF (K ).
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Algebraic Extensions

Algebraic extension

Let F be a field and K an extension of F ,
f (x) = a0 + a1x + · · ·+ anx

n ∈ F [x ]. For any γ ∈ K , if it
satisfies

f (γ) := a0 + a1γ + · · ·+ anγ
n = 0,

we call it root of f (x).

Proposition

Let F be a field and let p(x) ∈ F [x ] be an irreducible
polynomial. Then there exists a field K containing an
isomorphic copy of F in which p(x) has a root
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Algebraic Extensions

Definition
The element α of K is said to be algebraic over F if α is
a root of some nonzero polynomial f (x) ∈ F [x ]. The
extension K/F is said to be algebraic if every element of
K is algebraic over F .

If α is algebraic over a field F , then it is algebraic over
any extension field L of F .

Example : f (x) = x2 + 1 ∈ Q[x ]. i =
√
−1 ∈ C is a

root of f (x), so it is algebraic over Q.
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Algebraic Extensions

Minimal polynomial (1)

Proposition

Let α be algebraic over F .

1. There is a unique monic irreducible polynomial
mα,F (x) ∈ F [x ] which has α as a root.

2. A polynomial f (x) ∈ F [x ] has α as a root if and
only if mα,F (x) devides f (x) in F [x ].
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Algebraic Extensions

Minimal polynomial (2)

Definition

The polynomial mα,F (x) or mα(x) is called the minimal
polynomial for α over F . The degree of mα(x) is called
the degree of α.

The minimal polynomial for
√

2 over Q is x2 − 2 and√
2 is of degree 2 over Q, [Q(

√
2) : Q] = 2.

The minimal polynomial for 3
√

2 over Q is x3 − 2 and
3
√

2 is of degree 3 over Q, [Q( 3
√

2) : Q] = 3.
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Algebraic Extensions

Proposition

Let α be algebraic over F and F (α) the field generated by
α over F . Then

F (α) ' F [x ]/ < mα(x) >

and in particular [F (α) : F ] = deg(mα(x)) = deg α.

Proposition

The element α is algebraic over F if and only if F (α)/F is
finite. Moreover, if the extension K/F is finite, then it is
algebraic.
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Algebraic Extensions

Proposition

Let F ⊆ K ⊆ L be fields. Then [L : F ] = [L : K ][K : F ].

Corollary

Suppose L/F is a finite extension and let K be any
subfield of L containing F , F ⊆ K ⊆ L. Then [K : F ] is
divides [L : F ].
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Algebraic Extensions

Example

Consider 6
√

2 and [Q( 6
√

2) : Q] = 6.

Since ( 6
√

2)3 =
√

2, we get the minimal polynomial for
6
√

2 in Q(
√

2) is f (x) = x3 −
√

2 ∈ Q(
√

2)[x ].

Hence Q(
√

2) ⊂ Q( 6
√

2) and [Q( 6
√

2) : Q(
√

2)] = 3.

Together we have

6︷ ︸︸ ︷
Q ⊂ Q(

√
2) ⊂ Q(

6
√

2)

and
Q ⊂ Q(

√
2)︸ ︷︷ ︸

2

, Q(
√

2) ⊂ Q(
6
√

2)︸ ︷︷ ︸
3

.
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Algebraic Extensions

Example

Consider the field Q(
√

2,
√

3), which is generated by√
2 and

√
3 over Q.

Since x2 − 3 is irreducible in Q(
√

2),
[Q(
√

2,
√

3) : Q(
√

2)] = 2.

Hence [Q(
√

2,
√

3) : Q] = 4.
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Algebraic Extensions

The composite field

Definition
Let K1 and K2 be subfields of a field K . The composite
field of K1 and K2, denoted by K1K2, is the smallest
subfield K containing both K1 and K2.

Find composite of the two fields Q(
√

2) and Q( 3
√

2).

Consider that 6
√

2 has the polynomial minimal both in
Q(
√

2)[x ] and Q( 3
√

2)[x ].

Conversely, any field containing
√

2 and 3
√

2 contains
6
√

2 too.

Hence Q(
√

2)Q( 3
√

2) = Q( 6
√

2).

12 / 19



Splitting Fields

Splitting fields

Definition
The extension field K of F is called a splitting field for the
polynomial f (x) ∈ F [x ] if f (x) factors completely into
linear factors in K [x ] and f (x) does not factor completely
into linear factors over any proper subfield of K
containing F .

If f (x) is of degree n, then f (x) has at most n roots
in F .

If f (x) is of degree n, it has precisely n roots in F if
and only if f (x) splits completely in F [x ].
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Splitting Fields

Existence of splitting field

Theorem

1. For any field F , if f (x) ∈ F [x ], then there exists an
extension K of F which is a splitting field for f (x).

2. Any two splitting fields for f (x) ∈ F [x ] over F are
isomorphic.

The splitting field for x2 − 2 over Q is just Q(
√

2),
since two roots are

√
2 and −

√
2 in Q(

√
2).

The splitting field for (x2 − 2)(x2 − 3) over Q is
Q(
√

2,
√

3) generated by
√

2 and
√

3, since four roots
are
√

2,−
√

2,
√

3,−
√

3. Moreover, we know that

Q ⊂ Q(
√

2) ⊂ Q(
√

2,
√

3),

Q ⊂ Q(
√

3) ⊂ Q(
√

2,
√

3).
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Splitting Fields

Let F be a field and f (x) ∈ F [x ] be a polynomial with
leading cofficient an.

Over a splitting field for f (x) we have the
factorization :

f (x) = an(x − α1)n1(x − α2)n2 · · · (x − αk)nk

where α1, α2, . . . , αk are distinct elements of the
splitting field and ni ≥ 1 for all i .

Recall that αi is called a multiple root if ni > 1 and is
called a simple root if ni = 1.

The integer ni is called the multiplicity of αi .
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Splitting Fields

Separable

Definition
A polynomial over F is called separable if it has no
multiple roots. A polynomial which is not separable is
called inseparable.

Polynomial x2 − 2 is separable over Q since its two
roots

√
2 and −

√
2 are distinct.

Polynomial (x2 − 2)3 is inseparable over Q since its
roots

√
2 and −

√
2 has multiplicity 3.
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Splitting Fields

Proposition

A polynomial f (x) has a multiple root α if and only if α is
also a root of Dx f (x). In particular, f (x) is separable if
and only if (f (x),Dx f (x)) = 1.

The polynomial xp
n − x over Fp has derivatif

pnxp
n−1 − 1 = −1, since the field has characteristic p.

The derivative has no roots, so the polynomial has no
multiple roots, hence it is separable.

For example x4 − x over F3 is separable.
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Splitting Fields

The polynomial xn − 1 has derivatif nxn−1. Over any
field of characteristic not dividing n this polynomial
has only the root 0, which is not a root of xn − 1.
Hence xn − 1 is separable and there are n distinct nth

root of unity.
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Splitting Fields

Proposition

Every irreducible polynomial over a field of characteristic
0 is separable. A polynomial over such a field is separable
if and only if it is the product of distinct irreducible
polynomials.

Proposition

Every irreducible polynomial over a finite field F is
separable. A polynomial in F [x ] is separable if and only if
it is the product of distinct irreducible polynomials in F [x ].
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